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Helminth parasites survive through a combination of par-
asite longevity, repeated re-infection and selective im-
mune suppression to prevent protective Th2 responses.
To counteract helminth-induced immunosuppression,
and to induce long-term immunological memory, under-
standing of the multiple regulatory pathways withinthe T
cell compartment is needed. Extrinsic inhibition by regu-
latory T cells is a key element of Th2 suppression.
In addition, Th2 cells in chronic regulatory environments
become functionally impaired, indicating cell-intrinsic
regulation, which compromises protective Th2 memory.
We discuss these pathways and consider the potential
for reversing unresponsiveness through stimulatory
signals or replacement by new responder populations.
Future vaccine or therapeutic strategies should aim to
minimize extrinsic regulatory effects and simultaneously
negate Th2 anergy to drive effector responses into a long-
term functionally competent state.

Helminths and the immune system

Helminth parasites establish and assimilate themselves
for long periods in the host and immunoregulation plays a
key role in their survival strategy [1]. Helminths are large,
multicellular pathogens and the immune system has
evolved a suite of specialized effector mechanisms cen-
tered around the Th2 pathway (Box 1) to degrade and
eliminate them [2]. However, parasites have countered by
engaging directly with host signals that regulate and tune
effector pathways [3,4]. When the host response does
overcome parasite resistance, it is often at the cost of
incurring pathology [5]; perhaps for this reason immunity
is restrained by parasite immunomodulators and by en-
dogenous regulatory mechanisms. We review recent data
showing how regulatory networks develop through a com-
bination of extrinsic inhibition by Foxp3* regulatory T
cells (Tregs) and intrinsic regulation of Th2 effector cell
populations, through processes such as anergy, exhaus-
tion or adaptive tolerance. The impact of these regulatory
networks on the development of Th2 memory, and the
potential for reversing unresponsiveness through stimu-
latory signals and/or replenishing effector populations,
are discussed.

The regulators: regulatory T cells in helminth infection
Multiple types of immunosuppressive cells operate in the
immune system, including CD4*Foxp3™* regulatory T cells
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(mostly expressing CD25), B cells and macrophages [6].
In addition, suppressive cytokines such as TGF-3 and IL-
10, produced by diverse hematopoietic and non-hemato-
poietic cells are integral to immunoregulatory pathways
[7,8]. Although the complexity of regulatory cell types
continues to be charted, CD4*CD25*Foxp3* Tregs remain
the most prominent population of immunoregulatory
cells operating during helminth infections described to
date.

Immunoregulation in helminth infection was first rec-
ognized in early human studies, because peripheral T cells
in infected patients were frequently unresponsive to para-
site antigens and responses to bystander antigens (includ-
ing allergens and vaccines) were also reduced [9]. In
addition, antibody isotypes were distorted, with exception-
ally high concentrations of IgG4 that is, in part, attribut-
able to Treg activity [10]. TGF-B and IL-10-producing
Tregs were then cloned from Onchocerca volvulus-infected
patients [11], and higher Foxp3 expression was found in
peripheral blood T cells from cases of active lymphatic
filariasis and schistosomiasis [12-14]. This field research
provides a firm basis for investigating the role of Tregs in
experimental infection models.

Helminth infections drive Foxp3* Treg responses
In murine infection models, helminth infections elicit both
‘natural’ and ‘adaptive’ Foxp3™ Treg cell responses, which
dampen Th2 immunity. Foxp3* Treg numbers can expand
rapidly following filarial and gastrointestinal nematode
infections, with significant increases within 3-7 days
[15-20]. Moreover, CD4*Foxp3™ cells respond to infection
more rapidly than CD4*Foxp3~ effector T (Teff) cells, in-
creasing their frequency and biasing the initial response
towards a regulatory phenotype [16,17,21]. Early Foxp3™*
Treg responses are not merely homeostatic as induction
requires live (rather than heat-killed) parasites [16], where-
as other infections, such as Toxoplasma gondii, cause a
precipitous loss of Foxp3™ Tregs [22]. Conversely, drug-
induced clearance of helminths reduces Foxp3* Treg num-
bers and improves responses to bystander antigens [23,24].
In parallel with quantitative expansion of Tregs, hel-
minths can also induce elevated expression of CD103 and
other activation markers on Foxp3™ Tregs [15-17,25-27],
which exert a more potent suppressive function [15,18].
Thus, the regulatory capacity of the Treg subset in vivo
may be reflected not simply by the proportion of Foxp3™*
cells, but more accurately by expression of activation
markers.
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Box 1. Mechanisms of Th2 immunity to helminths

Trends in Immunology April 2012, Vol. 33, No. 4

Two main arenas are considered: in the gastrointestinal tract,
mucosal immunity involves both innate and adaptive populations.
Innate effector mechanisms include goblet cells, which increase
mucin production, switch mucin types (e.g. to MUC5AC) and release
the effector protein resistin-like molecule-B (RELM-a); mast cells and
alternatively activated macrophages, each driven by type 2 cytokines
from Th2 and innate lymphoid (‘nuocyte’) cells. In the different setting
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Foxp3* Tregs in resistance to helminth infections
Although the main role of Foxp3™ Tregs is to maintain
tolerance and control excessive inflammatory responses,
the trade-off is inhibited protective immune responses,
a property exploited by helminth parasites to immuno-
suppress their host. Experimentally, two imperfect
approaches are available to test whether Foxp3™ Tregs
are required for parasite survival. Anti-CD25 antibodies
can be used for long-term depletion of CD25"Foxp3™*
Tregs, with the caveat that this also depletes activated
Teffs while sparing CD25 Foxp3* Tregs. Alternatively, a
diphtheria toxin receptor (DTR) transgene expressed
specifically by Foxp3* cells [28,29] permits short-term
depletion of Foxp3™ Tregs, but this approach is less
applicable to chronic infection models.

The rapid rise in Foxp3* Treg numbers in infection
suggests that a suppressive response pre-empts establish-
ment of Th2 immunity. Accordingly, antibody-mediated
depletion of CD25" Treg cells prior to infection increases
Th2 responses to, and killing of, filarial parasites [17,30].
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of the tissues, skin-penetrating helminth larvae can be intercepted by
IL-56-dependent eosinophils; bloodstream microfilariae are cleared by
IgM-dependent antibody mechanisms; and in internal organs multi-
ple (and potentially redundant) populations or granulocytes and
macrophages are guided by chemokines, cytokines and antibodies to
attack helminths through pre-formed mediators and reactive meta-
bolites.
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Likewise, depletion of Tregs in Foxp3-DTR Strongyloides
ratti-infected mice increases host resistance if performed
within the first 4 days [20]. In infections with both filarial
Litomosoides sigmodontis and geohelminth S. ratti para-
sites, increased resistance appears to act on the adult,
rather than larval, stage [17,20] and long-term Th2 en-
hancement outlasts the direct effects of depletion [17]. In
these settings, Foxp3* Tregs inhibit the priming of Th2
responses and limit the quantity or functional quality of
the effector T cell pool available at later times.
Reflecting the diversity of helminth life histories, it is
not surprising that each species displays a unique interac-
tion with Tregs. For example, in Trichuris muris infection,
early intervention with anti-GITR, but not anti-CD25,
antibodies is most effective at reducing worm loads [31].
Anti-CD25 depletion is reported to be ineffective at boost-
ing immunity to other helminths, including Schistosoma
mansoni [32,33] and Trichinella spiralis [34]. Experiments
with Foxp3-DTR mice will be interesting in this regard
and, although Foxp3-depleted mice are not more resistant



to the gastrointestinal nematode Heligmosomoides poly-
gyrusin the first 14 days of infection [19], a longer time may
be required for primary protective Th2 immunity to take
effect in this infection.

Do Foxp3™ Tregs also inhibit protective immunity dur-
ing established infections? Anti-CD25 depletion, adminis-
tered both prior to and during S. mansoni infection of
C57BL/6 mice, significantly reduced egg numbers, al-
though administration solely during the chronic phase
had no effect on the BALB/c background [32,33]. Similarly,
mid-term depletion in L. sigmodontis infection can en-
hance resistance but, unlike early depletions, only if com-
bined with blocking CTLA-4 or providing co-stimulation
through GITR [26,35]. Thus, at later stages Foxp3™ Tregs
act alongside other regulatory elements, rather than play-
ing a dominant role, and hence regulation is more easily
reversed early rather than late in infection.

The functional significance of Foxp3™ Treg cells in sus-
ceptibility to human infections is more difficult to elucidate
beyond the correlations between regulatory markers and
suppressed effector T cell responses already discussed.
Notably, co-infection with human T cell-lymphotropic virus
1 and Strongyloides stercoralis results in an intensified
helminth infection and greatly increased Foxp3* Treg
numbers [36]. However, in O. volvulus infection, Foxp3™
Treg cells tend to be associated with dead rather than live
parasites, indicating a role in resolving inflammation rath-
er than in susceptibility [37].

Foxp3* Tregs in the control of immune pathology
Immune regulation is a beneficial and essential aspect of
host immunity in dampening potentially pathogenic in-
flammatory responses and Foxp3™ Tregs clearly control
Th2-mediated immune pathology in helminth infections.
For example, expanded and activated Foxp3* Treg popu-
lations down-regulate Th2 responses towards the S. man-
soni eggs that engender pathogenic reactions when
trapped in tissue vasculature [25,38] and the severity of
egg-induced liver pathology is negatively correlated with
Foxp3* Treg numbers [39]. The down-modulation of peri-
oval granuloma 8 weeks post infection is associated with
increased Foxp3* Treg activation [25] and pathology can
be alleviated by retroviral transfection of mice with Foxp3
[40] or transfer of infection-associated CD4*CD25"* Tregs
[41]. Rag™~ mice reconstituted with naive CD4* T cells
immediately prior to egg release develop worse immuno-
pathology if CD25Foxp3™ cells are absent [42]. Impaired
Foxp3* Treg responses in C57BL/6 TIr2 '~ mice leads to
augmented granuloma formation and pathology in the
liver that can be recovered by transfer of CD4*CD25*
Tregs or mimicked by depletion of CD25" Treg cells
[32]. Hence, Foxp3* Tregs are crucial moderators of both
susceptibility to infection and the resultant immunopa-
thology.

In the context of immune pathology in S. mansoni
infection, inhibiting Foxp3 function can be less effective
than blocking IL.-10 and the full regulatory effects of
Foxp3* Tregs are mainly apparent in the absence of IL-
10 [42], indicating that IL-10 plays a more dominant role in
regulating granuloma formation. This highlights that,
despite the association of IL-10 with the down-regulation

Trends in Immunology April 2012, Vol. 33, No. 4

of helminth immunity in humans [43-45] and with Foxp3*
Tregs in other settings, helminth-induced Foxp3* Tregs
largely act independently of IL-10 [25,35,38,46]. In both
human [13,47] and murine [25,34,38,46] infections, Foxp3™
cells are the main source of CD4" T cell-derived IL-10,
representing either Th2 cells [38] or the development of a
distinct population of Foxp3 IL-4~ Trl cells [11,47,48].
Foxp3* Tregs also play a role in regulating intestinal
inflammation during infections with 7. muris and H. poly-
gyrus [19,31]. Thus, ablation of Foxp3™ Tregs during both
infections leads to increased villous blunting and atrophy
and crypt hyperplasia, although mucus production or epi-
thelial cell turn-over are unaffected, potentially explaining
unaltered susceptibility. In human helminth infections,
patients with filarial lymphedema tend to have reduced
expression of Foxp3, CTLA-4 and TGF-B concomitant with
increased Th1l and Th17 responses, again associating an
imbalance in Foxp3* Treg responses with pathology [49].

Natural versus adaptive Foxp3* Treg cells

The natural and adaptive Foxp3* Treg cells activated
during helminth infections may have distinct or overlap-
ping functions. The rapid expansion of total Foxp3™ cell
numbers following infection suggests the stimulation of
natural Tregs, and the effects of Treg depletion immedi-
ately prior to infection demonstrate the functional impor-
tance of this cell type. A key question is whether natural
pre-committed Foxp3* Tregs form the first line of regula-
tion, while adaptive Foxp3* Treg cells appear later with
similar kinetics to the Th2 response, perhaps because both
adaptive Tregs and effector populations require time to be
primed and differentiate.

A model of successive and complementary waves of
Tregs during infection is consistent with available data
on in vivo depletion (Figure 1). Mice depleted of CD25*
Treg cells prior to infection show increased Th2-mediated
resistance to filarial parasites, indicating a role for natural
Foxp3™ Tregs in early phases [17,30]; subsequently, adap-
tive Foxp3* Treg cells are generated [16]. Similarly, whilst
natural CD25'Foxp3* Treg cells are able to control S.
mansoni egg-induced Th2 responses [25,38,42], naive
CD4* T cells from NOD (but not C57BL/6) mice convert
towards an adaptive Foxp3* Treg cell phenotype upon
exposure to S. mansoni egg antigens (SEA) in vitro
[50,51]. Evidence for a delayed adaptive Treg response is
also seen in H. polygyrus infection as early ablation of
Foxp3* Tregs (days 0-14) fails to impact protection, but
TGF-BR signaling blockade post day 28 to inhibit conver-
sion of adaptive Foxp3* Tregs increases parasite killing [3].

The conversion of naive NOD CD4" T cells into adaptive
Foxp3™ Tregs can occur upon exposure to SEA (or a key
component, w-1), and is dependent upon host TGF-3; SEA
is able to up-regulate directly both secreted TGF- and its
chaperone, membrane latency-associated peptide LAP, in
CD4* T cells [4,50,51]. Congruent with impaired Foxp3*
Treg responses and increased egg-induced pathology in
TIr2~'~ mice [32], Foxp3 conversion is partially TLR2-
dependent with TLR2 signals enhancing TGF-B produc-
tion. This suggests that synergistically induced adaptive
Tregs, together with natural Tregs, curb infection-associ-
ated inflammation and pathology.
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Figure 1. Successive waves of Foxp3* Tregs regulate immunity to helminths. Foxp3* Treg responses to helminths encompass cells of both natural and adaptive origins.
Evidence indicates that natural Foxp3* Tregs respond rapidly to infection, forming the first line of regulation, whereas adaptive Foxp3* Treg responses develop with slower
kinetics. To limitimmune pathology, Tregs must dampen infection-induced inflammation; however, activated Tregs can inhibit protective immunity, opening an exploitable
avenue for parasites. Reflecting this, both host and helminth can create adaptive Foxp3* Tregs, because helminths secrete a TGF-B mimic to hijack the TGF-p pathway used

to convert naive T cells towards a regulatory phenotype.

The conversion of naive T cells into Foxp3™ Tregs
reveals an opportunity for helminths to manipulate their
host. For example, H. polygyrus excretory/secretory (HES)
molecules are able to convert naive T cells from C57BL/6
mice towards an adaptive Foxp3* Treg cell phenotype in
vitro [3] and infected BALB/c mice have a greater propen-
sity towards in vivo Foxp3 conversion following exposure to
oral antigen. Foxp3 induction depends on the host TGF-BR
signaling pathway, but not host TGF-3. Thus, conversion is
directed by a parasite-derived TGF-B mimic rather than
arising from the intrinsic host response to inflammation.

The regulated: Th2 effector responses in helminth
infection

The long-term persistence of helminths presents the host
with the challenge of maintaining CD4* T cell responses for
decades. Although Type 2 immunity is, in general, down-
regulated in established helminth infections, the fate of the
underlying Th2 effector cells in an environment of persis-
tent infection and dominant immune-regulation is not
known (Figure 2).

One possibility is that Th2 effector cells remain fully
functional but are held in check by different extrinsic
regulatory cells and their mediators. This would require
constant regulation to maintain immune down-modulation
so that removal of regulation completely restores Th2 cell
function. This is consistent with human studies, as drug
clearance of helminth infection [52] or neutralization of
TGF-B and IL-10 in vitro [53] recovers aspects of Th2 cell
function. However, curative drug treatment does not reset
immunity to a protective state, as most patients remain
susceptible to re-infection [54].
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Alternatively, persistent exposure to antigen and im-
mune suppression may alter the phenotype of the respond-
ing Th2 cells, resulting in a temporary or permanent
change in function. This could extend to conversion of
Th2 into a Treg subset but it is more likely to result in
an attenuated or non-responsive state. In this scenario,
neutralizing extrinsic immune regulation may not be suf-
ficient to restore immunity because the Th2 cells are
intrinsically sub-functional. This could lead to a form of
regulatory memory and/or imprinting of unresponsiveness
in the Th2 effector population. These outcomes on the
underlying Th2 cells have quite different implications
for designing strategies or vaccines to counteract para-
site-induced immune suppression and for therapeutically
harnessing helminth-induced immune regulation for the
control of allergies or autoimmune diseases.

Not all Type 2 responses are equal

Chronic helminth infections are associated with a shift in
the overall Type 2 phenotype of the host. In filariasis and
schistosomiasis, IL-5 is often down-regulated more than
IL-4 [55,56], indicating modulation of selective constitu-
ents of Type 2 immunity rather than a global inhibition. In
general, the chronic Type 2 profile can be seen as retaining
the ‘inducer’ cytokine IL-4 while diminishing ‘effector’
cytokines, such as IL-5. A major conceptual advance
was the description of a ‘modified’ or ‘tolerant’ Th2 pheno-
type in patients with attenuated allergic symptoms [57],
having switched from inflammatory IgE production to-
wards non-inflammatory IgG4 driven by increased IL-
10. Similarly, modified Th2 phenotypes have been de-
scribed in chronic helminth infections [9]. However, the
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Figure 2. Th2 cell fate underlying chronic down-modulated/modified Type 2 immunity. Th2 cells exposed to a chronic regulatory environment may undergo a variety of
different fates, resulting in a down-regulated Type 2 phenotype. These diverse fates have different implications for the ability of an infected host to develop protective Th2
memory responses and will require different types of therapeutic strategies to restore protective immunity. If there is an intrinsic impairment in the functional ability of the
Th2 cells, or a switch towards a regulatory phenotype, then this may have long-term consequences for the generation of Th2 memory. The effects may be to prevent the
development of Th2 memory cells and to encumber the host with a tolerized or regulatory memory response. This will require the design of therapies or vaccines that can

counter or prevent the intrinsic loss of Th2 cell effector functions.

mechanisms underlying this change are unknown, not
least because mice do not have an IgG4 equivalent and
so do not present a corresponding modified Th2 phenotype.

Competition between different T cell subsets could ex-
plain the alteration of Type 2 immunity; for example,
through expansion of regulatory Trl populations [58] or
differential susceptibility of Th2 cells to apoptosis [59].
However, it is becoming clear that the ‘classical’ Th2 cell is
an oversimplification because individual Th2 cells do not
express all Type 2-associated cytokines but can, for exam-
ple, produce IL-9 independently of IL-4 (Th9 cells) [60], IL-
5 without IL-4 under the influence of IL-33 [61] or be Tth
cells with Th2 characteristics [62]. A Th2 response clearly
comprises a spectrum of subtypes producing different cy-
tokine combinations, with shifts in phenotype reflecting
changes in the dominance of different Th2 subtypes
through competition within existing populations or recruit-
ment of new subtypes from the naive T cell pool. Alterna-
tively, Th2 cells may convert between subtypes or subsets.

Thus, a modified Type 2 response may represent inflam-
matory Th2 cells switching towards an attenuated pheno-
type, shutting down IL-5 and reinforcing IL-10. In
extremis, this scenario could involve conversion of Th2
towards a regulatory T cell phenotype, such as Trl,
Tr35 [63] or Foxp3™, resulting in the development of infec-
tious tolerance.

Intrinsic regulation: anergy versus exhaustion?

A global change in the Type 2 phenotype towards a modi-
fied form may also reflect the differentiation of Th2 cells
into an intrinsically unresponsive or hyporesponsive state.
Initial evidence for T cell anergy was provided in human
filariasis, where in vitro immune responsiveness could be
restored by the addition of IL-2 [64]. The characterization
of an anergic molecular signature within the PBL of filari-
asis patients, comprising c-cbl, cbl-b, Nedd4 and Itch,
provides further evidence for the development of T cell
anergy [12]. In experimental chronic filarial infection with
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L. sigmodontis, CD4" T cells purified from the infection site
lose the ability to proliferate and produce Th2 cytokines in
response to parasite antigen [35]. This defect is intrinsic
within the effector CD4" T cell population as neutraliza-
tion of IL-10 or removal of Foxp3*CD25"* Treg cells fails to
restore responsiveness [26,35]. Blockade of CTLA-4 in
PBMC cultures increases Th2 cytokine responses and
reduces expression of c-cbl, cbl-b and Itch in filarial
patients [12], and promotes resistance to filarial and gas-
trointestinal nematodes in murine models [26,65]. Thus,
during chronic helminth infection, CD4" Th2 cells develop
an intrinsically unresponsive functional state in both mice
and humans that potentially represents T cell anergy and
is, at least partially, dependent upon CTLA-4.

Murine studies investigating Th2 cell fate in the down-
modulation of S. mansoni-mediated inflammation con-
firmed that an intrinsic loss of Th2 cell function occurred
in vivo [66]. Overt Type 2 responses decreased over time
and tracking Th2 cells using IL-4gfp reporter mice showed
that the numbers of IL-4gfp* Th2 cells remained constant.
Instead, the ability of GFP-labeled Th2 cells to proliferate
and produce Th2 cytokines was impaired through the
anergy factor GRAIL. This phenotype was independent
of the extrinsic environment because it was maintained
upon transfer to a new host. Interestingly, GRAIL is one of
the anergy factors not up-regulated in human filarial
patients [12], indicating that mechanisms of hyporespon-
siveness differ between infections.

Anergy is associated with impaired T cell priming [67]
and helminth parasites are adept at impairing DC function
[68] or promoting regulatory DC populations [69]. Treg
activity has also been linked to the development of T cell
anergy [67]. Thus, a strong early Treg response combined
with down-modulated APC capability could favor develop-
ment of hyporesponsiveness. However, in S. mansoni in-
fection, hyporesponsiveness follows early strong Th2
priming, potentially indicating the development of exhaus-
tion [70]. Exhaustion is well defined in CD8" T cell immu-
nity to viral infections and tumors and is associated with
strong immune activation induced by high antigen load or
persistent challenge. The loss of effector functions is hier-
archical depending on the level of exhaustion. It is possible,
therefore, that the differential loss of Th2 effector cyto-
kines seen in human helminth infections could reflect
different stages of exhaustion. Interestingly, in hel-
minth-infected Ethiopian migrants in Israel, individuals
with a highly activated peripheral CD4* T cell phenotype
indicated exhaustion through reduced proliferative
responses, impaired TCR signaling with reduced ERK
phosphorylation and increased expression of cbl-b,
CTLA-4 and TGF-8 [71,72].

Murine studies show exhaustion can be mediated
through a range of inhibitory receptors, including PD-1
and TIM-1 [70], and macrophage expression of the PD-1
ligands, PD-L1 and PD-L2, inhibits T cell immunity in S.
mansoni and Nippostrongylus brasiliensis infections, re-
spectively [73,74]. Yet, the involvement of GRAIL during S.
mansoni-induced CD4* T cell hyporesponsiveness [66]
indicates that either CD4* Th2 cell hyporesponsiveness
is a form of exhaustion different from that observed in
CDS8" T cells, or that it is a form of adaptive tolerance that
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develops in situations of persistent antigen [75]. Although
anergic and exhausted T cells may appear functionally
similar at a superficial level, gene expression studies indi-
cate they represent distinct differentiation states [70], with
very different potential for recovery.

Implications for therapeutic and protective memory
responses

The development of an anergic (or possibly, exhausted)
CD4" Th2 cell phenotype has important implications for
the treatment of infections and the development of memo-
ry. Even if extrinsic immune-regulation is ablated, Th2
effector cells will remain functionally impaired and unable
to kill the parasite (Figure 2). In agreement with this,
depletion of CD25" Tregs during established L. sigmodon-
tis infection is successful only if combined with blocking
CTLA-4 or providing co-stimulation through GITR [26,35],
both of which promote Th2 effector cell function. However,
there remains no clear characterization of T cell memory in
the regulated helminth-infected host, in contrast to the
strongly protective memory observed in immunization
models [2].

CD8" T cell exhaustion is associated with impaired
memory cell development and survival in the absence of
antigen [70]. If the majority of Th2 cells are exhausted,
then drug-induced clearance of infection would result in
the collapse of the Th2 effector population and failure to
generate Th2 memory. This could be beneficial for avoiding
an overzealous memory response and associated pathology
on re-infection (e.g. to S. mansoni eggs). However, to
develop protective immunity, Th2 responses would have
to be re-initiated on each subsequent exposure.

In contrast, anergic CD4" T cells can survive long-term,
offering potential for infected individuals to develop a
tolerized memory state [76]. It is not known to what extent
regulatory T cells develop a memory function, but if either
Tregs or anergic effector cells persist, the host would
remain immunosuppressed even after infection is cleared.
In these circumstances, once an exhausted or regulated
T cell response has established, immunity to all subse-
quent exposures will be historically constrained towards
hyporesponsiveness.

Historical constraints and Th2 flexibility
In the setting of long-term regulated T cell responses, how
much flexibility is there for the Type 2 response to over-
come the constraint of a historically unresponsive status
(Figure 3)? Does natural resistance take decades to devel-
op because the host has to first rewrite or replace their
initial regulated response, and how can this process be
accelerated therapeutically? Interestingly, beekeepers
that develop tolerance to bee stings via a modified Th2
response lose their unresponsive phenotype if they remain
unexposed for several months [77], and anergic T cells can
regain effector function over time in the absence of antigen.
Thus, there is certainly flexibility within the immune
system to reverse a tolerized immune response.
Vaccination prior to infection is the obvious route for
pre-empting regulation, particularly if it induces a rapid
memory Th2 response that prevents the early Treg domi-
nance. In this situation it may be necessary to design
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Figure 3. How can Th2 hyporesponsiveness be reversed? There are two potential routes for reversing Th2 hyporesponsiveness. (a) Replacement of hyporesponsive Th2
cells by expansion of the remaining inflammatory Th2 cells or by priming of new Th2 cells. (b) Reprogramming hyporesponsive Th2 cells by blocking down-regulatory
mechanisms or by providing activation signals, such as cytokines or co-stimulation. (¢) The flexibility of a Th2 response, both at the population and the cellular level, will
determine whether Th2 hyporesponsiveness results in short- or long-term tolerance and will affect the ease by which Th2 hyporesponsiveness can be reversed to induce
protective immunity. Translational therapies harnessing helminth-induced immune suppression to treat allergies or autoimmune diseases will be most effective if they can

elicit long-term stable tolerance.

vaccines that omit any epitopes preferentially recognized
by Tregs, or incorporate adjuvants that neutralize Treg
activity. One consideration is that partially successful
vaccines that still permit low-level chronic infections
may lose efficacy over time due to exhaustion or anergy
of the vaccine-primed Th2 cells in the face of persistent
infection.

Once a down-modulated response to infection has estab-
lished, strategies will be required to rescue the ineffective
Th2 cells. One possibility would be to reactivate them to
restore effector and memory capability, as seen with PD-1
blockade of exhausted virus-specific CD8" T cells [78]. The
alternative is regeneration, either by recruitment of newly
developed Th2 cells from the naive pool, or expansion of the
remaining inflammatory Th2 cells. Precedents for both are
seen during viral exhaustion, with new cell priming help-
ing to preserve CD8 responses [79] and Tth cells maintain-
ing a reservoir of responsive CD4" T cells [80].

Although it is likely that new T cell priming will con-
tinue throughout infection, its importance for maintenance
of chronic Th2 responses is unknown. The rate of priming
and extent to which pre-existing (and unresponsive) Th2

lineages are replaced may define the flexibility of an estab-
lished Type 2 response (Figure 3). A low priming rate
would allow established but ineffective Th2 lineages to
dominate, requiring therapies to redirect these unrespon-
sive Teff cells. In contrast, a high priming rate, or thera-
peutically boosting new priming, would allow the rapid
replacement of down-modulated Th2 cells with freshly
primed ‘responsive’ Th2 cells. An intriguing indication that
new epitopes prime protective responses following chemo-
therapy has emerged from studies of S. mansoni infections,
in which immunity correlates with IgE responses towards
specificities exposed as parasites die [81]. Thus, it may be
possible both to rescue anergized Th2 cells, and reinvigo-
rate the Th2 pool with fresh recruits free of regulatory
influences. In all likelihood, these approaches can be com-
bined to provide the optimal restoration of anti-helminth
immunity.

Concluding remarks

By analyzing helminth infections, it is clear that regulatory
and effector T cells form a long-term interrelationship that
compromises immunity and promotes parasite survival.
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Recent findings on the generation, interactions and fates of
both the regulators and the regulated during infection,
provide a framework for applying the fundamental prin-
ciples of T cell regulation to these highly prevalent dis-
eases. Many key questions now require testing in
experimental models to refine this framework, including
the roles of natural and adaptive Tregs, the relative im-
portance of the different co-inhibitory signals and the
longer term fate of the hyporesponsive Th2 population.
Answering these questions will open new avenues to pro-
mote long-term protective memory to helminth infection
and by identifying the regulatory mechanisms responsible
for long-term tolerance suggest new therapeutic strategies
for controlling allergies or autoimmune diseases.
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